Inteligencia artificial - Quilo de Ciencia podcast - CienciaEs.comDesde hace décadas, los ordenadores han superado a los humanos en muchos tipos de razonamientos y capacidades. Sin embargo, la inteligencia artificial (IA) no ha podido superar, ni siquiera acercarse, a la inteligencia humana en un tipo de razonamiento, llamado razonamiento relacional.

¿Qué es el razonamiento relacional? Resulta que es el tipo de razonamiento más común y cotidiano de los seres humanos. Predecir quien será el siguiente en morir en Juego de Tronos, o decidir qué vino sacar a la mesa para acompañar un plato de carne son ejemplos de razonamientos relacionales. En ellos, usamos las relaciones entre personas u objetos para extraer conclusiones o incluso predecir el futuro con una cierta precisión.

Una dificultad de este razonamiento en el caso de la IA es la escasa estructura de datos que necesita.
Ahora, informáticos de la empresa Deepmind desarrollan un nuevo algoritmo basado en el diseño de redes neuronales que demuestra no ya igualar, sino superar a la inteligencia humana en el razonamiento relacional.

Una red neuronal es la simulación por ordenador de las conexiones entre neuronas y su modificación plástica en el tiempo, dependiendo de la información que llega desde el exterior. Esta conectividad variable entre neuronas es lo que permite el aprendizaje, que no es otra cosa que ir modificando el output dado a un determinado input hasta que el output es correcto.

Por ejemplo, una red neuronal sencilla podría ser programada para distinguir entre una piedra y un garbanzo. Como input podrían utilizarse imágenes de piedras y de garbanzos. Si la red neuronal interpreta una imagen como una piedra su output sería encender una luz verde; si ve un garbanzo, una luz roja. Al principio, es normal que la red se equivoque y que al ver un garbanzo encienda la luz equivocada, la verde. La información de que se ha equivocado, sin embargo, puede ahora utilizarse para modificar las conexiones entre las neuronas de manera que se vaya haciendo más probable que se encienda la luz correcta en ambos casos, garbanzo o piedra. Tras repetir este ciclo varias veces, la red habrá aprendido a distinguir entre las dos cosas y se equivocará muy pocas veces.

Esto es lo que parecen haber conseguido los investigadores de Deepmind, empresa adquirida por Google en 2014. Los informáticos diseñaron un conjunto de redes neuronales por ordenador que fue capaz de aprender a responder correctamente a preguntas relativas a relaciones entre objetos. Por ejemplo: ¿es el objeto a la derecha del cubo del mismo color que el que se encuentra a la izquierda de la esfera?
Utilizando muchas imágenes y preguntas, así como las respuestas erróneas o acertadas que iba generando, la red neuronal fue aprendiendo a establecer las relaciones. Tras este entrenamiento, fue capaz de responder con un 96% de exactitud a cualquier pregunta relativa a los objetos, lo que los humanos solo pudieron hacer un 92% de las veces.

Estos avances nos acercan al día en que la AI superará en todos los aspectos a la inteligencia humana, día que, sin duda, marcará un antes y un después en la historia de la Humanidad. Muchos que hoy estáis leyendo esto viviréis ese día.

 

LEAVE A REPLY